Roll No.

322412(14)

B. E. (Fourth Semester) Examination, 2020

(Old Scheme)

(CSE, IT Engineering Branch)

DISCRETE STRUCTURES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt part (a) from each unit is compulsory and carries 2 marks. Attempt any two parts from (b), (c) and (d) are carries 7 marks each.

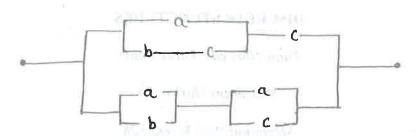
Unit-I

1. (a) Define Tautology and Contradiction.

(b) Define logical equivalence. Show that

 $p \Rightarrow (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$

- (c) Find complete disjunctive normal form in three variables, and show that its value is 1.
- (d) Replace the following switching circuit by a simpler one:



Fig

Unit-II

2. (a) Define Lattice.

2

7

(b) If I is the set of integers and the relation $xRy \Rightarrow x-y$ is an even integer, then prove that R is an equivalence relation, where $x, y \in I$.

- (c) Prove that if $f: A \to B$ is one-one onto mapping then $f^{-1}: B \to A$ will be one-one onto mapping.
- (d) Explain composition of mappings. If $f: R \to R$, $f(x) = \cos x$ and $g: R \to R$, $g(x) = x^2$, then find $(g \circ f)(x)$ and $(f \circ g)(x)$. Is $f \circ g = g \circ f$?

Unit-III

- 3. (a) Define algebraic structure with example.
 - (b) Define Subgroup. Show that the necessary and sufficient conditions for a non empty subset H of a group (G, *) to be subgroups is $a \in H$, $b \in H \Rightarrow a*b^{-1} \in H$.
 - (c) State and prove the Lagrange's theorem.
 - (d) Prove that every field is an integral domain.

Unit-IV

4. (a) Define cut set.

2

2

7

7

(b) Find shortest path from a to z in the graph shown in fig. where numbers associated with the edges are the weights.

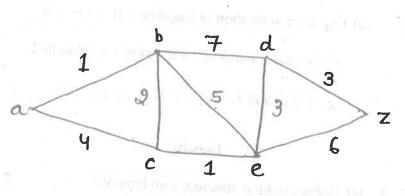


Fig.

(c) Find a minimum spanning tree of the following graph shown in fig.

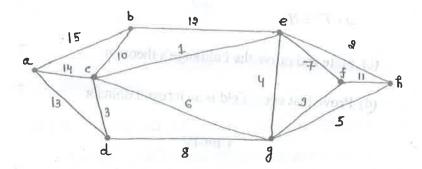
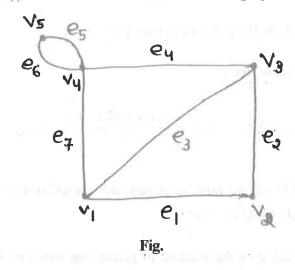


Fig. 322412(14)



(ii) Write the adjacency matrix of the graph.

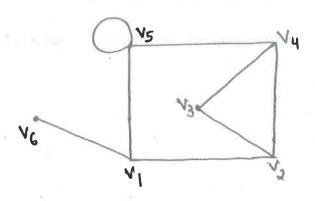


Fig.

PTO

Unit-V

5. (a) Write the pigeonhole principle.

2

(b) Show that:

7

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}, \quad n \ge 1$$

(c) How many positive integers not exceeding 500 are divisible by 7 or 11?

7

(d) Solve by the method of generating functions the recurrence relation.

$$a_r - 5a_{r-1} + 6a_{r-2} = 2$$
, $r \ge 2$

with the boundary conditions $a_0 = 1$ and $a_1 = 2$.

7